Back to Search Start Over

A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population

Authors :
Mohammad Ziaul Islam Chowdhury
Alexander A. Leung
Robin L. Walker
Khokan C. Sikdar
Maeve O’Beirne
Hude Quan
Tanvir C. Turin
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Risk prediction models are frequently used to identify individuals at risk of developing hypertension. This study evaluates different machine learning algorithms and compares their predictive performance with the conventional Cox proportional hazards (PH) model to predict hypertension incidence using survival data. This study analyzed 18,322 participants on 24 candidate features from the large Alberta’s Tomorrow Project (ATP) to develop different prediction models. To select the top features, we applied five feature selection methods, including two filter-based: a univariate Cox p-value and C-index; two embedded-based: random survival forest and least absolute shrinkage and selection operator (Lasso); and one constraint-based: the statistically equivalent signature (SES). Five machine learning algorithms were developed to predict hypertension incidence: penalized regression Ridge, Lasso, Elastic Net (EN), random survival forest (RSF), and gradient boosting (GB), along with the conventional Cox PH model. The predictive performance of the models was assessed using C-index. The performance of machine learning algorithms was observed, similar to the conventional Cox PH model. Average C-indexes were 0.78, 0.78, 0.78, 0.76, 0.76, and 0.77 for Ridge, Lasso, EN, RSF, GB and Cox PH, respectively. Important features associated with each model were also presented. Our study findings demonstrate little predictive performance difference between machine learning algorithms and the conventional Cox PH regression model in predicting hypertension incidence. In a moderate dataset with a reasonable number of features, conventional regression-based models perform similar to machine learning algorithms with good predictive accuracy.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.211498a7c0248f58d837362168601ec
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-27264-x