Back to Search
Start Over
Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family
- Source :
- Communications Materials, Vol 5, Iss 1, Pp 1-10 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Topological semimetals, known for their intriguing properties arising from band degeneracies, have garnered significant attention. However, the discovery of a material realization and the detailed characterization of spinless Dirac semimetals have not yet been accomplished. Here, we propose from first-principles calculations that the RE 8CoX 3 group (RE = rare earth elements, X = Al, Ga, or In) contains ideal spinless Dirac semimetals whose Fermi surfaces are fourfold degenerate band-crossing points (without including spin degeneracy). Despite the lack of space inversion symmetry in these materials, Dirac points are formed on the rotation-symmetry axis due to accidental degeneracies of two bands corresponding to different 2-dimensional irreducible representations of the C 6v group. We also investigate, through first-principles calculations and effective model analysis, various phase transitions caused by lattice distortion or elemental substitutions from the Dirac semimetal phase to distinct topological semimetallic phases such as nonmagnetic linked-nodal-line and Weyl semimetals (characterized by the second Stiefel–Whitney class) and ferromagnetic Weyl semimetals.
- Subjects :
- Materials of engineering and construction. Mechanics of materials
TA401-492
Subjects
Details
- Language :
- English
- ISSN :
- 26624443
- Volume :
- 5
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.20764c1967645099cf12218bbd6b8e4
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s43246-024-00635-9