Back to Search
Start Over
Toward Multi-Parametric Porous Silicon Transducers Based on Covalent Grafting of Graphene Oxide for Biosensing Applications
- Source :
- Frontiers in Chemistry, Vol 6 (2018)
- Publication Year :
- 2018
- Publisher :
- Frontiers Media S.A., 2018.
-
Abstract
- Graphene oxide (GO) is a two-dimensional material with peculiar photoluminescence emission and good dispersion in water, that make it an useful platform for the development of label-free optical biosensors. In this study, a GO-porous silicon (PSi) hybrid device is realized using a covalent chemical approach in order to obtain a stable support for biosensing applications. Protein A, used as bioprobe for biosensing purposes, is covalently linked to the GO, using the functional groups on its surface, by carbodiimide chemistry. Protein A bioconjugation to GO-PSi hybrid device is investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle (WCA) measurements, Fourier transform infrared (FTIR) spectroscopy, steady-state photoluminescence (PL), and fluorescence confocal microscopy. PSi reflectance and GO photoluminescence changes can thus be simultaneously exploited for monitoring biomolecule interactions as in a multi-parametric hybrid biosensing device.
Details
- Language :
- English
- ISSN :
- 22962646
- Volume :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.205773663b66438c8c5cac9f29a31824
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fchem.2018.00583