Back to Search Start Over

Classification of Remote Sensing Images Using EfficientNet-B3 CNN Model With Attention

Authors :
Haikel Alhichri
Asma S. Alswayed
Yakoub Bazi
Nassim Ammour
Naif A. Alajlan
Source :
IEEE Access, Vol 9, Pp 14078-14094 (2021)
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

Scene classification is a highly useful task in Remote Sensing (RS) applications. Many efforts have been made to improve the accuracy of RS scene classification. Scene classification is a challenging problem, especially for large datasets with tens of thousands of images with a large number of classes and taken under different circumstances. One problem that is observed in scene classification is the fact that for a given scene, only one part of it indicates which class it belongs to, whereas the other parts are either irrelevant or they actually tend to belong to another class. To address this issue, this paper proposes a deep attention Convolutional Neural Network (CNN) for scene classification in remote sensing. CNN models use successive convolutional layers to learn feature maps from larger and larger regions (or receptive fields) of the scene. The attention mechanism computes a new feature map as a weighted average of these original feature maps. In particular, we propose a solution, named EfficientNet-B3-Attn-2, based on the pre-trained EfficientNet-B3 CNN enhanced with an attention mechanism. A dedicated branch is added to layer 262 of the network, to compute the required weights. These weights are learned automatically by training the whole CNN model end-to-end using the backpropagation algorithm. In this way, the network learns to emphasize important regions of the scene and suppress the regions that are irrelevant to the classification. We tested the proposed EfficientNet-B3-Attn-2 on six popular remote sensing datasets, namely UC Merced, KSA, OPTIMAL-31, RSSCN7, WHU-RS19, and AID datasets, showing its strong capabilities in classifying RS scenes.

Details

Language :
English
ISSN :
21693536
Volume :
9
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.2038ec6c633a4a798b0b3f166fcaf9fc
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2021.3051085