Back to Search Start Over

Facial Expression Recognition via Non-Negative Least-Squares Sparse Coding

Authors :
Ying Chen
Shiqing Zhang
Xiaoming Zhao
Source :
Information, Vol 5, Iss 2, Pp 305-318 (2014)
Publication Year :
2014
Publisher :
MDPI AG, 2014.

Abstract

Sparse coding is an active research subject in signal processing, computer vision, and pattern recognition. A novel method of facial expression recognition via non-negative least squares (NNLS) sparse coding is presented in this paper. The NNLS sparse coding is used to form a facial expression classifier. To testify the performance of the presented method, local binary patterns (LBP) and the raw pixels are extracted for facial feature representation. Facial expression recognition experiments are conducted on the Japanese Female Facial Expression (JAFFE) database. Compared with other widely used methods such as linear support vector machines (SVM), sparse representation-based classifier (SRC), nearest subspace classifier (NSC), K-nearest neighbor (KNN) and radial basis function neural networks (RBFNN), the experiment results indicate that the presented NNLS method performs better than other used methods on facial expression recognition tasks.

Details

Language :
English
ISSN :
20782489
Volume :
5
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Information
Publication Type :
Academic Journal
Accession number :
edsdoj.200d9f8668fe442794b1148d28abf95c
Document Type :
article
Full Text :
https://doi.org/10.3390/info5020305