Back to Search Start Over

Exceptional load-bearing capability of Al FPCB/Cu FPCB lap joints using instantaneous laser-based large area facial soldering: Experimental and numerical investigations

Authors :
Seoah Kim
YehRi Kim
Eunjin Jo
Hyeon-Sung Lee
Sungwook Mhin
Tae-Young Lee
Sehoon Yoo
Yong-Ho Ko
Dongjin Kim
Source :
Journal of Materials Research and Technology, Vol 30, Iss , Pp 6668-6685 (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

This study introduces a novel method for integrating aluminum flexible printed circuit boards (FPCBs) and copper FPCBs into battery management systems (BMS) using and instantaneous large area facial laser source soldering. Achieving a robust bonding strength of 65 MPa involved applying 600 W of laser power for 2 s, enhancing atom diffusion and promoting intermetallic compound (IMC) growth. Finite Element Method (FEM) simulations revealed variations in heat transfer between Al and Cu, affecting IMC thickness at interfaces. Formation of the (Cu, Ni)3Sn4 phase within solder, and variations in laser output significantly influenced solder joint orientation and Al electrode nucleation. Excessive laser power (>800 W) caused critical damage, such as delamination at the Al-PI interface, altering fracture modes and bonding strength. Furthermore, with a detailed examination of the laser soldering phenomenon through both experimental and numerical investigations, this study provides a thorough understanding of the different soldering mechanisms in conventional reflow soldering compared to instantaneous uniform large-area heat source laser soldering. These insights provide new design and material considerations to replace the conventional wiring harness with Al/Cu FPCB lap joints which optimize the circuitry and reducing BMS volume.

Details

Language :
English
ISSN :
22387854
Volume :
30
Issue :
6668-6685
Database :
Directory of Open Access Journals
Journal :
Journal of Materials Research and Technology
Publication Type :
Academic Journal
Accession number :
edsdoj.20087e7b6cdd42df9c1263e0277ab524
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jmrt.2024.05.077