Back to Search Start Over

Thermodynamic and optical analyses of a novel solar CPVT system based on parabolic trough concentrator and nanofluid spectral filter

Authors :
Gang Wang
Zhen Zhang
Tieliu Jiang
Jianqing Lin
Zeshao Chen
Source :
Case Studies in Thermal Engineering, Vol 33, Iss , Pp 101948- (2022)
Publication Year :
2022
Publisher :
Elsevier, 2022.

Abstract

This study presents the design and performance evaluation of a novel concentration photovoltaic/thermal (PV/thermal) system based on parabolic trough concentrator and indium tin oxide-ethylene glycol (ITOEG) nanofluid spectral filter. The overall design principle of the PV/thermal system is introduced, and the ITOEG nanofluid spectral filter is prepared and experimentally tested. For the full spectrum, the average transmittance and absorbance of the nanofluid spectral filter are 69.1% and 30.9%. The optical behaviour evaluation results reveal a double-peak radiation flux density distribution on the nanofluid channel bottom surface as well as on the solar cell module surface. When the north-south sun-tracking error increases to 0.2°, the optical efficiency of the PV/thermal system decreases to 93.7%. That means the system has a relatively good adaptability to the sun-tracking error. The thermodynamic analysis results reveal that the theoretical photoelectric conversion and solar thermal efficiencies of the PV/thermal system are 29.1% and 17.2%. The thermal efficiency of the PV/thermal system can be increased by increasing the nanofluid inlet flow velocity or by decreasing the nanofluid inlet temperature properly.

Details

Language :
English
ISSN :
2214157X
Volume :
33
Issue :
101948-
Database :
Directory of Open Access Journals
Journal :
Case Studies in Thermal Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.1fe49f5f5cf442a18ac77754bc509c72
Document Type :
article
Full Text :
https://doi.org/10.1016/j.csite.2022.101948