Back to Search Start Over

Alantolactone induces apoptosis through ROS-mediated AKT pathway and inhibition of PINK1-mediated mitophagy in human HepG2 cells

Authors :
Xing Kang
Hijuan Wang
Yanwei Li
Ying Xiao
Lili Zhao
Tingting Zhang
Shaohe Zhou
Xiaolun Zhou
Yi Li
Zhexing Shou
Chao Chen
Bin Li
Source :
Artificial Cells, Nanomedicine, and Biotechnology, Vol 47, Iss 1, Pp 1961-1970 (2019)
Publication Year :
2019
Publisher :
Taylor & Francis Group, 2019.

Abstract

Alantolactone (Ala), a major sesquiterpene lactone extracted from Inula helenium, exerts potent anti-tumour activities in various cancers. However, the underlying mechanism of such activities is still ambiguous. This study focused on evaluating the anti-tumour effects and molecular mechanisms of Ala on HepG2 cells. Our results demonstrated that Ala might inhibit cellular proliferation, induce G2/M phase arrest and apoptosis in HepG2 cells. Specifically, this study confirmed that Ala induced G2/M phase arrest by upregulating p21, downregulating cyclin A1 and cyclin B1, and promoting cellular apoptosis by increasing the expression of cleaved caspase-3 and PARP. Furthermore, Ala caused an increase in reactive oxygen species (ROS) level and inhibition of ROS production significantly prevented Ala-induced apoptosis. Interestingly, the accumulation of ROS, in turn, suppressed the downstream AKT signalling. Finally, mitophagy of Ala-treated HepG2 cells was observed by Mito/Lyso staining. Mitophagy was significantly inhibited by downregulation of the expression of PINK1 and Parkin proteins. The inhibition of mitophagy by a mitophagy inhibitor was found to markedly enhance Ala-mediated apoptosis and growth inhibition in HepG2 cells. Consequently, Ala induced cellular apoptosis via ROS-mediated suppression of AKT signalling and inhibition of PINK1-mediated mitophagy. Thus, Ala has potential to be used for the treatment of liver cancer.

Details

Language :
English
ISSN :
21691401 and 2169141X
Volume :
47
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Artificial Cells, Nanomedicine, and Biotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.1f85074b3e1a4b68861b7707bc711464
Document Type :
article
Full Text :
https://doi.org/10.1080/21691401.2019.1593854