Back to Search Start Over

Transformation of microbiology data into a standardised data representation using OpenEHR

Authors :
Antje Wulff
Claas Baier
Sarah Ballout
Erik Tute
Kim Katrin Sommer
Martin Kaase
Anneka Sargeant
Cora Drenkhahn
Infection Control Study Group
Dirk Schlüter
Michael Marschollek
Simone Scheithauer
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract The spread of multidrug resistant organisms (MDRO) is a global healthcare challenge. Nosocomial outbreaks caused by MDRO are an important contributor to this threat. Computer-based applications facilitating outbreak detection can be essential to address this issue. To allow application reusability across institutions, the various heterogeneous microbiology data representations needs to be transformed into standardised, unambiguous data models. In this work, we present a multi-centric standardisation approach by using openEHR as modelling standard. Data models have been consented in a multicentre and international approach. Participating sites integrated microbiology reports from primary source systems into an openEHR-based data platform. For evaluation, we implemented a prototypical application, compared the transformed data with original reports and conducted automated data quality checks. We were able to develop standardised and interoperable microbiology data models. The publicly available data models can be used across institutions to transform real-life microbiology reports into standardised representations. The implementation of a proof-of-principle and quality control application demonstrated that the new formats as well as the integration processes are feasible. Holistic transformation of microbiological data into standardised openEHR based formats is feasible in a real-life multicentre setting and lays the foundation for developing cross-institutional, automated outbreak detection systems.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.1f4a5650ac8b4c829b64c91b3e5fc95a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-89796-y