Back to Search
Start Over
Rapid, Massive, and Green Synthesis of Polyoxometalate-Based Metal–Organic Frameworks to Fabricate POMOF/PAN Nanofiber Membranes for Selective Filtration of Cationic Dyes
- Source :
- Molecules, Vol 29, Iss 7, p 1493 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- Developing high−efficiency membrane materials for the rapid removal of organic dyes is crucial but remains a challenge. Polyoxometalates (POMs) clusters with anionic structures are promising candidates for the removal of cationic dyes via electrostatic interactions. However, their shortcomings, such as their solubility and inability to be mass−produced, hinder their application in water pollution treatment. Here, we propose a simple and green strategy utilizing the room temperature stirring method to mass produce nanoscale polyoxometalate−based metal−organic frameworks (POMOFs) with porous rhomboid−shaped dodecahedral and hexagonal prism structures. The products were labeled as POMOF1 (POMOF-PW12) and POMOF2 (POMOF-PMo12). Subsequently, a series of x wt% POMOF1/PAN (x = 0, 3, 5, and 10) nanofiber membranes (NFMs) were prepared using electrospinning technology, where polyacrylonitrile (PAN) acts as a “glue” molecule facilitating the bonding of POMOF1 nanoparticles. The as−prepared samples were comprehensively characterized and exhibited obvious water stability, as well as rapid selective adsorption filtration performance towards cationic dyes. The 5 wt% POMOF1/PAN NFM possessed the highest removal efficiency of 96.7% for RhB, 95.8% for MB, and 86.4% for CV dyes, which realized the selective separation over 95% of positively charged dyes from the mixed solution. The adsorption mechanism was explained using FT−IR, SEM, Zeta potential, and adsorption kinetics model, which proved that separation was determined via electrostatic interaction, hydrogen bonding, and π–π interactions. Moreover, the POMOF1/PAN membrane presented an outstanding recoverable and stable removal rate after four cycles. This study provides a new direction for the systematic design and manufacture of membrane separation materials with outstanding properties for contaminant removal.
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 29
- Issue :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1ede8be179d44e80a1a0a72e4103592d
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules29071493