Back to Search Start Over

Deep learning approach for detecting tropical cyclones and their precursors in the simulation by a cloud-resolving global nonhydrostatic atmospheric model

Authors :
Daisuke Matsuoka
Masuo Nakano
Daisuke Sugiyama
Seiichi Uchida
Source :
Progress in Earth and Planetary Science, Vol 5, Iss 1, Pp 1-16 (2018)
Publication Year :
2018
Publisher :
SpringerOpen, 2018.

Abstract

Abstract We propose a deep learning approach for identifying tropical cyclones (TCs) and their precursors. Twenty year simulated outgoing longwave radiation (OLR) calculated using a cloud-resolving global atmospheric simulation is used for training two-dimensional deep convolutional neural networks (CNNs). The CNNs are trained with 50,000 TCs and their precursors and 500,000 non-TC data for binary classification. Ensemble CNN classifiers are applied to 10 year independent global OLR data for detecting precursors and TCs. The performance of the CNNs is investigated for various basins, seasons, and lead times. The CNN model successfully detects TCs and their precursors in the western North Pacific in the period from July to November with a probability of detection (POD) of 79.9–89.1% and a false alarm ratio (FAR) of 32.8–53.4%. Detection results include 91.2%, 77.8%, and 74.8% of precursors 2, 5, and 7 days before their formation, respectively, in the western North Pacific. Furthermore, although the detection performance is correlated with the amount of training data and TC lifetimes, it is possible to achieve high detectability with a POD exceeding 70% and a FAR below 50% during TC season for several ocean basins, such as the North Atlantic, with a limited sample size and short lifetime.

Details

Language :
English
ISSN :
21974284
Volume :
5
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Progress in Earth and Planetary Science
Publication Type :
Academic Journal
Accession number :
edsdoj.1eba14b1386a41c7afffdc2f3eb5e429
Document Type :
article
Full Text :
https://doi.org/10.1186/s40645-018-0245-y