Back to Search Start Over

Wind Turbine Wake Characterization from Temporally Disjunct 3-D Measurements

Authors :
Paula Doubrawa
Rebecca J. Barthelmie
Hui Wang
S. C. Pryor
Matthew J. Churchfield
Source :
Remote Sensing, Vol 8, Iss 11, p 939 (2016)
Publication Year :
2016
Publisher :
MDPI AG, 2016.

Abstract

Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes to probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. We find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.

Details

Language :
English
ISSN :
20724292
Volume :
8
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.1eb7b93182b84fb588ec7694c6fc8623
Document Type :
article
Full Text :
https://doi.org/10.3390/rs8110939