Back to Search Start Over

Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

Authors :
Gérard Jean-Louis
Massetti Massimo
Babatasi Gérard
Ivascau Calin
Rouet René
Buléon Clément
Lemoine Sandrine
Hanouz Jean-Luc
Source :
BMC Anesthesiology, Vol 10, Iss 1, p 12 (2010)
Publication Year :
2010
Publisher :
BMC, 2010.

Abstract

Abstract Background Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. Methods We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz). After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyl)theophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation) between the groups by a variance analysis and post hoc test. Results Desflurane 6% (84 ± 6% of baseline) enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P < 0.0001). N-mercaptopropionylglycine (54 ± 3% of baseline), 8-(p-Sulfophenyl)theophylline (62 ± 9% of baseline), HOE140 (58 ± 6% of baseline) abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline) and bradykinin (83 ± 4% of baseline) induced postconditioning (P < 0.0001 vs control), N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively). Conclusions In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin administered at the beginning of reoxygenation, was mediated, at least in part, through ROS production.

Subjects

Subjects :
Anesthesiology
RD78.3-87.3

Details

Language :
English
ISSN :
14712253
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Anesthesiology
Publication Type :
Academic Journal
Accession number :
edsdoj.1eb387ef5ee54ea6b55bc436e23cd948
Document Type :
article
Full Text :
https://doi.org/10.1186/1471-2253-10-12