Back to Search Start Over

Photo-flocculation of microbial mat extracellular polymeric substances and their transformation into transparent exopolymer particles: Chemical and spectroscopic evidences

Authors :
Mashura Shammi
Xiangliang Pan
Khan M. G. Mostofa
Daoyong Zhang
Cong-Qiang Liu
Source :
Scientific Reports, Vol 7, Iss 1, Pp 1-12 (2017)
Publication Year :
2017
Publisher :
Nature Portfolio, 2017.

Abstract

Abstract Upon exposure to sunlight extracellular polymeric substances (EPS) were partially transformed into transparent exopolymer particles (TEP) and unstable flocs of different sizes without the addition of any precursors. Parallel factor (PARAFAC) modelling of the sample fluorescence spectra identified humic-like and protein-like or tyrosine-like components in both untreated and irradiated EPS samples. After 58 hours of solar irradiation, humic-like substances were entirely decomposed, while the regenerated protein-like substance from EPS was the key component in the irradiated samples. Degradation and reformation of EPS occurred which was confirmed by the results of size exclusion chromatography, dissolved organic carbon, total protein and total polysaccharide analyses. Irradiated EPS was composed of –COOH or C = O (amide I band) and –NH and –CN (amide II band), while Fourier transform infrared spectroscopy (FTIR) of TEP revealed more acidic –COOH and –C–O groups, indicating typical acidic protein-like TEP. The regenerated protein-like substances could form complexes with free metals originating from degraded EPS in irradiated samples, which could be responsible for the formation of TEP/floc in the aqueous media. These results suggest that TEP/floc formation from EPS could occur by a complexation mechanism between dissolved organic matter and metals, thereby causing ionic charge neutralisation upon sunlight exposure.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.1e94c167627b44e89e85768055cfaa0f
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-017-09066-8