Back to Search
Start Over
A YOLOv3 Deep Neural Network Model to Detect Brain Tumor in Portable Electromagnetic Imaging System
- Source :
- IEEE Access, Vol 9, Pp 82647-82660 (2021)
- Publication Year :
- 2021
- Publisher :
- IEEE, 2021.
-
Abstract
- This paper presents the detection of brain tumors through the YOLOv3 deep neural network model in a portable electromagnetic (EM) imaging system. YOLOv3 is a popular object detection model with high accuracy and improved computational speed. Initially, the scattering parameters are collected from the nine-antenna array setup with a tissue-mimicking head phantom, where one antenna acts as a transmitter and the other eight antennas act as receivers. The images are then reconstructed from the post-processed scattering parameters by applying the modified delay-multiply-and-sum algorithm that contains $416\times 416$ pixels. Fifty sample images are collected from the different head regions through the EM imaging system. The images are later augmented to generate a final image data set for training, validation, and testing, where the data set contains 1000 images, including fifty samples with a single and double tumor. 80% of the images are utilized for training the network, whereas 10% are used for validation, and the rest 10% are utilized for testing purposes. The detection performance is investigated with the different image data sets. The achieved detection accuracy and F1 scores are 95.62% and 94.50%, respectively, which ensure better detection accuracy. The training accuracy and validation losses are 96.74% and 9.21%, respectively. The tumor detection with its location in different cases from the testing images is evaluated through YOLOv3, which demonstrates its potential in the portable electromagnetic head imaging system.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1e737617e04afb92e666fc934815c1
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2021.3086624