Back to Search Start Over

Rapidly damping hydrogels engineered through molecular friction

Authors :
Zhengyu Xu
Jiajun Lu
Di Lu
Yiran Li
Hai Lei
Bin Chen
Wenfei Li
Bin Xue
Yi Cao
Wei Wang
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Hydrogels capable of swift mechanical energy dissipation hold promise for a range of applications including impact protection, shock absorption, and enhanced damage resistance. Traditional energy absorption in such materials typically relies on viscoelastic mechanisms, involving sacrificial bond breakage, yet often suffers from prolonged recovery times. Here, we introduce a hydrogel designed for friction-based damping. This hydrogel features an internal structure that facilitates the motion of a chain walker within its network, effectively dissipating mechanical stress. The hydrogel network architecture allows for rapid restoration of its damping capacity, often within seconds, ensuring swift material recovery post-deformation. We further demonstrate that this hydrogel can significantly shield encapsulated cells from mechanical trauma under repetitive compression, owing to its proficient energy damping and rapid rebound characteristics. Therefore, this hydrogel has potential for dynamic load applications like artificial muscles and synthetic cartilage, expanding the use of hydrogel dampers in biomechanics and related areas.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.1e59770ce65e43e090e6cbca6ea6a429
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-49239-4