Back to Search
Start Over
Trimetallic Chalcogenide Species: Synthesis, Structures, and Bonding
- Source :
- Molecules, Vol 27, Iss 21, p 7473 (2022)
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- In an attempt to isolate boron-containing tri-niobium polychalcogenide species, we have carried out prolonged thermolysis reactions of [Cp*NbCl4] (Cp* = ɳ5-C5Me5) with four equivalents of Li[BH2E3] (E = Se or S). In the case of the heavier chalcogen (Se), the reaction led to the isolation of the tri-niobium cubane-like cluster [(NbCp*)3(μ3-Se)3(BH)(μ-Se)3] (1) and the homocubane-like cluster [(NbCp*)3(μ3-Se)3(μ-Se)3(BH)(μ-Se)] (2). Interestingly, the tri-niobium framework of 1 stabilizes a selenaborate {Se3BH}− ligand. A selenium atom is further introduced between boron and one of the selenium atoms of 1 to yield cluster 2. On the other hand, the reaction with the sulfur-containing borate adduct [LiBH2S3] afforded the trimetallic clusters [(NbCp*)3(μ-S)4{μ-S2(BH)}] (3) and [(NbCp*)3(μ-S)4{μ-S2(S)}] (4). Both clusters 3 and 4 have an Nb3S6 core, which further stabilizes {BH} and mono-sulfur units, respectively, through bi-chalcogen coordination. All of these species were characterized by 11B{1H}, 1H, and 13C{1H} NMR spectroscopy, mass spectrometry, infrared (IR) spectroscopy, and single-crystal X-ray crystallography. Moreover, theoretical investigations revealed that the triangular Nb3 framework is aromatic in nature and plays a vital role in the stabilization of the borate, borane, and chalcogen units.
- Subjects :
- aromaticity
boron
cubane
selenium
sulfur
Organic chemistry
QD241-441
Subjects
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 27
- Issue :
- 21
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1e3d401935a4e88a40f80c5452fa62a
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules27217473