Back to Search
Start Over
Radiosensitizing effects of CDK4/6 inhibitors in hormone receptor-positive and HER2-negative breast cancer mediated downregulation of DNA repair mechanism and NF-κB-signaling pathway
- Source :
- Translational Oncology, Vol 49, Iss , Pp 102092- (2024)
- Publication Year :
- 2024
- Publisher :
- Elsevier, 2024.
-
Abstract
- CDK4/6 inhibitors combined with endocrine therapy prolonged survival in hormone receptor (HR)-positive and HER2-negative advanced breast cancer. We investigated whether CDK4/6 inhibitors enhance radiosensitivity and their underlying mechanisms of this subtype of breast cancer. In vitro and in vivo experiments were conducted using two HR-positive and HER2-negative breast cancer cell lines (MCF-7 and T-47D), CDK4/6 inhibitors (ribociclib and palbociclib) and radiotherapy (RT) to assess the biological functions and mechanisms. The radiation-enhancing effect was assessed using clonogenic assays; γH2AX and 53BP1 levels were assessed by immunofluorescence to evaluate DNA damage. The levels of phospho (p)-ERK, c-Myc, and DNA-double strand break (DSB)-related molecules, p-DNA-PKcs, Rad51, and p-ATM, were assessed by western blotting. We used an NF-κB p65 transcription factor assay kit to evaluate NF-κB activity. We evaluated the antitumor effect of the combination of RT and ribociclib through the MCF-7 orthotopic xenograft model. The synergistic effects of combining RT with ribociclib and palbociclib pretreatment were demonstrated by clonogenic assay. CDK4/6 inhibitors synergistically increased the numbers of RT-induced γH2AX and 53BP1, downregulated the expression of p-DNA-PKcs, Rad51 and p-ATM activated by RT, and reduced RT-triggering p-ERK expression, NF-κB activation, and its down-streaming gene, c-Myc. Combined ribociclib and RT reduced the growth of MCF-7 cell xenograft tumors, and downregulated the immunohistochemical expression of p-ERK, p-NF-κB p65, and c-Myc compared to that in the control group. Combining CDK4/6 inhibitors enhanced radiosensitivity of HR-positive and HER2-negative breast cancer cells at least by reducing DNA-DSB repair and weakening the activation of ERK and NF-κB signaling by RT.
Details
- Language :
- English
- ISSN :
- 19365233
- Volume :
- 49
- Issue :
- 102092-
- Database :
- Directory of Open Access Journals
- Journal :
- Translational Oncology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1de44e4112724428b5c89026680f9140
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.tranon.2024.102092