Back to Search Start Over

Development of an anti-infective coating on the surface of intraosseous implants responsive to enzymes and bacteria

Authors :
Xin Liao
Xingfang Yu
Haiping Yu
Jiaqi Huang
Bi Zhang
Jie Xiao
Source :
Journal of Nanobiotechnology, Vol 19, Iss 1, Pp 1-16 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Bacterial proliferation on the endosseous implants surface presents a new threat to the using of the bone implants. Unfortunately, there is no effective constructed antibacterial coating which is bacterial anti-adhesion substrate-independent or have long-term biofilm inhibition functions. Methods Drug release effect was tested in Chymotrypsin (CMS) solution and S. aureus. We used bacterial inhibition rate assays and protein leakage experiment to analyze the in vitro antibacterial effect of (Montmorillonite/Poly-l-lysine-Chlorhexidine)10 [(MMT/PLL-CHX)10] multilayer film. We used the CCK-8 assay to analyze the effect of (MMT/PLL-CHX)10 multilayer films on the growth and proliferation of rat osteoblasts. Rat orthopaedic implant-related infections model was constructed to test the antimicrobial activity effect of (MMT/PLL-CHX)10 multilayer films in vivo. Results In this study, the (MMT/PLL-CHX)10 multilayer films structure were progressively degraded and showed well concentration-dependent degradation characteristics following incubation with Staphylococcus aureus and CMS solution. Bacterial inhibition rate assays and protein leakage experiment showed high levels of bactericidal activity. While the CCK-8 analysis proved that the (MMT/PLL-CHX)10 multilayer films possess perfect biocompatibility. It is somewhat encouraging that in the in vivo antibacterial tests, the K-wires coated with (MMT/PLL-CHX)10 multilayer films showed lower infections incidence and inflammation than the unmodified group, and all parameters are close to SHAM group. Conclusion (MMT/PLL-CHX)10 multilayer films provides a potential therapeutic method for orthopaedic implant-related infections.

Details

Language :
English
ISSN :
14773155
Volume :
19
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.1d99fdf16d464fb49974fc84466a5ccc
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-021-00985-3