Back to Search Start Over

Ultrasonic-assisted preparation of ultrafine Pd nanocatalysts loaded on Cl−-intercalated MgAl layered double hydroxides for the catalytic dehydrogenation of dodecahydro-N-ethylcarbazole

Authors :
Yanpeng Wu
Xiaoran Liu
Xuefeng Bai
Wei Wu
Source :
Ultrasonics Sonochemistry, Vol 88, Iss , Pp 106097- (2022)
Publication Year :
2022
Publisher :
Elsevier, 2022.

Abstract

N-ethylcarbazole/dodecahydro-N-ethylcarbazole (NEC/H12-NEC) is a promising LOHC, and the development of a catalyst with high activity and stability is the key to realizing its reversible hydrogen storage process. In this paper, ultrafine Pd nanocrystalline catalysts (Pd/LDHs-us) supported on Cl--intercalated MgAl LDHs were prepared by a simple ultrasonic-assisted reduction method and applied in the dehydrogenation of 12H-NEC. In the process of ultrasonic-assisted reduction, the instantaneous high temperature generated by cavitation decomposed part of the CO32– in LDHs interlayer, and promoted PdCl42- to enter the interlayer and become new intercalated ions. At the same time, hydroxyl groups on the surface of LDHs were excited to generate hydrogen radicals (•H) with strong reducibility, which reduced PdCl42- to Pd nanoparticles (PdNPs) in situ. The remaining Cl- ions continued to exist in the interlayer as intercalated ions. The agglomeration of PdNPs was effectively inhibited, and the average particle size was 1.8 nm, which was uniformly dispersed on LDHs, which improved the catalytic activity of Pd/LDHs-us. The coordination between PdNPs and oxygen in the hydroxyl groups on the surface of LDHs improved its catalytic stability. Using Pd/LDHs-us catalyst, the conversion rate of H12-NEC was 100.0 %, and the dehydrogenation efficiency was 99.3 % at 180℃. When the reaction temperature drops to 170℃, the dehydrogenation efficiency can still reach 94.6 %, showing excellent catalytic performance. The study of dehydrogenation kinetics shows that the apparent activation energy of Pd/LDHs-us catalyst is only 90.97 kJ/mol. This provides a new method and idea for the preparation of efficient dehydrogenation catalysts in the future.

Details

Language :
English
ISSN :
13504177
Volume :
88
Issue :
106097-
Database :
Directory of Open Access Journals
Journal :
Ultrasonics Sonochemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.1d91c67ef634170899ce77a7e7c348c
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ultsonch.2022.106097