Back to Search Start Over

In situ observation of crystal rotation in Ni-based superalloy during additive manufacturing process

Authors :
Dongsheng Zhang
Wei Liu
Yuxiao Li
Darui Sun
Yu Wu
Shengnian Luo
Sen Chen
Ye Tao
Bingbing Zhang
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Understanding the dynamic process of epitaxial microstructure forming in laser additive manufacturing is very important for achieving products with a single crystalline texture. Here, we perform in situ, real-time synchrotron Laue diffraction experiments to capture the microstructural evolution of nickel-based single-crystal superalloys during the rapid laser remelting process. In situ synchrotron radiation Laue diffraction characterises the crystal rotation behaviour and stray grain formation process. With a complementary thermomechanical coupled finite element simulation and molecular dynamics simulation, we identify that the crystal rotation is governed by the localised heating/cooling heterogeneity-induced deformation gradient and recognise that the sub-grain rotation caused by rapid dislocation movement could be the origin of granular stray grains at the bottom of the melt pool.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.1d38f5f0b10c44058a0952261e6aa772
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-38727-8