Back to Search Start Over

Dimension reduction in spatial regression with kernel SAVE method

Authors :
Affossogbe, Mètolidji Moquilas Raymond
Nkiet, Guy Martial
Ogouyandjou, Carlos
Source :
Comptes Rendus. Mathématique, Vol 359, Iss 4, Pp 475-479 (2021)
Publication Year :
2021
Publisher :
Académie des sciences, 2021.

Abstract

We consider the smoothed version of sliced average variance estimation (SAVE) dimension reduction method for dealing with spatially dependent data that are observations of a strongly mixing random field. We propose kernel estimators for the interest matrix and the effective dimension reduction (EDR) space, and show their consistency.

Subjects

Subjects :
Mathematics
QA1-939

Details

Language :
English, French
ISSN :
17783569
Volume :
359
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Comptes Rendus. Mathématique
Publication Type :
Academic Journal
Accession number :
edsdoj.1d284fe2fdc4c3aa84c75bd8ea07d7f
Document Type :
article
Full Text :
https://doi.org/10.5802/crmath.187