Back to Search Start Over

Microbiological diagnostic performance of metagenomic next-generation sequencing compared with conventional culture for patients with community-acquired pneumonia

Authors :
Tianlai Lin
Xueliang Tu
Jiangman Zhao
Ling Huang
Xiaodong Dai
Xiaoling Chen
Yue Xu
Wushuang Li
Yaoyao Wang
Jingwei Lou
Shouxin Wu
Hongling Zhang
Source :
Frontiers in Cellular and Infection Microbiology, Vol 13 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

BackgroundCommunity-acquired pneumonia (CAP) is an extraordinarily heterogeneous illness, both in the range of responsible pathogens and the host response. Metagenomic next-generation sequencing (mNGS) is a promising technology for pathogen detection. However, the clinical application of mNGS for pathogen detection remains challenging.MethodsA total of 205 patients with CAP admitted to the intensive care unit were recruited, and broncho alveolar lavage fluids (BALFs) from 83 patients, sputum samples from 33 cases, and blood from 89 cases were collected for pathogen detection by mNGS. At the same time, multiple samples of each patient were tested by culture. The diagnostic performance was compared between mNGS and culture for pathogen detection.ResultsThe positive rate of pathogen detection by mNGS in BALF and sputum samples was 89.2% and 97.0%, which was significantly higher (P < 0.001) than that (67.4%) of blood samples. The positive rate of mNGS was significantly higher than that of culture (81.0% vs. 56.1%, P = 1.052e-07). A group of pathogens including Mycobacterium abscessus, Chlamydia psittaci, Pneumocystis jirovecii, Orientia tsutsugamushi, and all viruses were only detected by mNGS. Based on mNGS results, Escherichia coli was the most common pathogen (15/61, 24.59%) of non-severe patients with CAP, and Mycobacterium tuberculosis was the most common pathogen (21/144, 14.58%) leading to severe pneumonia. Pneumocystis jirovecii was the most common pathogen (26.09%) in severe CAP patients with an immunocompromised status, which was all detected by mNGS only.ConclusionmNGS has higher overall sensitivity for pathogen detection than culture, BALF, and sputum mNGS are more sensitive than blood mNGS. mNGS is a necessary supplement of conventional microbiological tests for the pathogen detection of pulmonary infection.

Details

Language :
English
ISSN :
22352988
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Frontiers in Cellular and Infection Microbiology
Publication Type :
Academic Journal
Accession number :
edsdoj.1cfde1b8608c4255832da09c63bfd1a0
Document Type :
article
Full Text :
https://doi.org/10.3389/fcimb.2023.1136588