Back to Search Start Over

Automated Mapping of Land Cover Type within International Heterogenous Landscapes Using Sentinel-2 Imagery with Ancillary Geospatial Data

Authors :
Kristofer Lasko
Francis D. O’Neill
Elena Sava
Source :
Sensors, Vol 24, Iss 5, p 1587 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

A near-global framework for automated training data generation and land cover classification using shallow machine learning with low-density time series imagery does not exist. This study presents a methodology to map nine-class, six-class, and five-class land cover using two dates (winter and non-winter) of a Sentinel-2 granule across seven international sites. The approach uses a series of spectral, textural, and distance decision functions combined with modified ancillary layers (such as global impervious surface and global tree cover) to create binary masks from which to generate a balanced set of training data applied to a random forest classifier. For the land cover masks, stepwise threshold adjustments were applied to reflectance, spectral index values, and Euclidean distance layers, with 62 combinations evaluated. Global (all seven scenes) and regional (arid, tropics, and temperate) adaptive thresholds were computed. An annual 95th and 5th percentile NDVI composite was used to provide temporal corrections to the decision functions, and these corrections were compared against the original model. The accuracy assessment found that the regional adaptive thresholds for both the two-date land cover and the temporally corrected land cover could accurately map land cover type within nine-class (68.4% vs. 73.1%), six-class (79.8% vs. 82.8%), and five-class (80.1% vs. 85.1%) schemes. Lastly, the five-class and six-class models were compared with a manually labeled deep learning model (Esri), where they performed with similar accuracies (five classes: Esri 80.0 ± 3.4%, region corrected 85.1 ± 2.9%). The results highlight not only performance in line with an intensive deep learning approach, but also that reasonably accurate models can be created without a full annual time series of imagery.

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.1cecc3b8c88c4cec98abb93297016e69
Document Type :
article
Full Text :
https://doi.org/10.3390/s24051587