Back to Search
Start Over
A High-resolution Non-detection of Escaping Helium in the Ultrahot Neptune LTT 9779b: Evidence for Weakened Evaporation
- Source :
- The Astrophysical Journal Letters, Vol 962, Iss 1, p L19 (2024)
- Publication Year :
- 2024
- Publisher :
- IOP Publishing, 2024.
-
Abstract
- The recent discovery of “ultrahot” ( P < 1 day) Neptunes has come as a surprise: some of these planets have managed to retain gaseous envelopes despite being close enough to their host stars to trigger strong photoevaporation and/or Roche lobe overflow. Here, we investigate atmospheric escape in LTT 9779b, an ultrahot Neptune with a volatile-rich envelope. We observed two transits of this planet using the newly commissioned WINERED spectrograph ( R ∼ 68,000) on the 6.5 m Clay/Magellan II Telescope, aiming to detect an extended upper atmosphere in the He 10830 Å triplet. We found no detectable planetary absorption: in a 0.75 Å passband centered on the triplet, we set a 2 σ upper limit of 0.12% ( δ R _p / H < 14) and a 3 σ upper limit of 0.20% ( δ R _p / H < 22). Using a H/He isothermal Parker wind model, we found corresponding 95% and 99.7% upper limits on the planetary mass-loss rate of $\dot{M}\lt {10}^{10.03}$ g s ^−1 and $\dot{M}\lt {10}^{11.11}$ g s ^−1 , respectively, smaller than predicted by outflow models even considering the weak stellar X-ray and ultraviolet emission. The low evaporation rate is plausibly explained by a metal-rich envelope, which would decrease the atmospheric scale height and increase the cooling rate of the outflow. This hypothesis is imminently testable: if metals commonly weaken planetary outflows, then we expect that JWST will find high atmospheric metallicities for small planets that have evaded detection in He 10830 Å.
- Subjects :
- Exoplanet atmospheres
Exoplanet atmospheric evolution
Astrophysics
QB460-466
Subjects
Details
- Language :
- English
- ISSN :
- 20418213 and 20418205
- Volume :
- 962
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- The Astrophysical Journal Letters
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1cd63fc4e4bcd8f9b79ffc4633e60
- Document Type :
- article
- Full Text :
- https://doi.org/10.3847/2041-8213/ad23cf