Back to Search
Start Over
Proposed hydrogen kagome metal with charge density wave state and enhanced superconductivity
- Source :
- npj Computational Materials, Vol 10, Iss 1, Pp 1-8 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract The d-transition kagome metals provide a novel platform for exploring correlated superconducting state intertwined with charge ordering. However, the force of charge-density-wave (CDW) and superconductivity (SC) formation, and the mechanism underlying electron pairing remain elusive. Here, utilizing our newly developed methodology based on electride states as fingerprints, we propose a novel class of hydrogen-kagome superconductors AH3Li5 (A = C, Si, P) with ideal kagome band characteristics and elucidate the electron-phonon coupling (EPC) mechanism responsible for electron pairing. The representative compressed PH3Li5 and CH3Li5 demonstrates impressive superconducting transition temperatures (T cs) of 120.09 K and 57.18 K, respectively. Importantly, the CDW competes with SC thus resulting in a pressure-driven dome-shaped SC in CH3Li5, where the CDW order was induced by both EPC and Fermi surface nesting. Our study presents a scientific method for identifying high-T c hydrogen-kagome metals and provides new avenues to fundamentally understand the underlying mechanism of CDW and SC, thereby guiding future experimental investigations.
Details
- Language :
- English
- ISSN :
- 20573960
- Volume :
- 10
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- npj Computational Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1c8eca53c654d77a016671053a1b562
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41524-024-01463-8