Back to Search Start Over

Machine learning algorithms distinguish discrete digital emotional fingerprints for web pages related to back pain

Authors :
Davide Caldo
Silvia Bologna
Luana Conte
Muhammad Saad Amin
Luca Anselma
Valerio Basile
Md. Murad Hossain
Alessandro Mazzei
Paolo Heritier
Riccardo Ferracini
Elizaveta Kon
Giorgio De Nunzio
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Back pain is the leading cause of disability worldwide. Its emergence relates not only to the musculoskeletal degeneration biological substrate but also to psychosocial factors; emotional components play a pivotal role. In modern society, people are significantly informed by the Internet; in turn, they contribute social validation to a “successful” digital information subset in a dynamic interplay. The Affective component of medical pages has not been previously investigated, a significant gap in knowledge since they represent a critical biopsychosocial feature. We tested the hypothesis that successful pages related to spine pathology embed a consistent emotional pattern, allowing discrimination from a control group. The pool of web pages related to spine or hip/knee pathology was automatically selected by relevance and popularity and submitted to automated sentiment analysis to generate emotional patterns. Machine Learning (ML) algorithms were trained to predict page original topics from patterns with binary classification. ML showed high discrimination accuracy; disgust emerged as a discriminating emotion. The findings suggest that the digital affective “successful content” (collective consciousness) integrates patients’ biopsychosocial ecosystem, with potential implications for the emergence of chronic pain, and the endorsement of health-relevant specific behaviors. Awareness of such effects raises practical and ethical issues for health information providers.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.1c22601200624ea3bdd64ab40335c234
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-31741-2