Back to Search Start Over

Electronic and magnetic excitations in La3Ni2O7

Authors :
Xiaoyang Chen
Jaewon Choi
Zhicheng Jiang
Jiong Mei
Kun Jiang
Jie Li
Stefano Agrestini
Mirian Garcia-Fernandez
Hualei Sun
Xing Huang
Dawei Shen
Meng Wang
Jiangping Hu
Yi Lu
Ke-Jin Zhou
Donglai Feng
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-9 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract High-temperature superconductivity was discovered in the pressurized nickelate La3Ni2O7 which has a unique bilayer structure and mixed valence state of nickel. The properties at ambient pressure contain crucial information of the fundamental interactions and bosons mediating superconducting pairing. Here, using X-ray absorption spectroscopy and resonant inelastic X-ray scattering, we identified that Ni 3 $${d}_{{x}^{2}-{y}^{2}}$$ d x 2 − y 2 , Ni 3 $${d}_{{z}^{2}}$$ d z 2 , and ligand oxygen 2p orbitals dominate the low-energy physics with a small charge-transfer energy. Well-defined optical-like magnetic excitations soften into quasi-static spin-density-wave ordering, evidencing the strong electronic correlation and rich magnetic properties. Based on an effective Heisenberg spin model, we extract a much stronger inter-layer effective magnetic superexchange than the intra-layer ones and propose two viable magnetic structures. Our findings emphasize that the Ni 3 $${d}_{{z}^{2}}$$ d z 2 orbital bonding within the bilayer induces novel electronic and magnetic excitations, setting the stage for further exploration of La3Ni2O7 superconductor.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.1ba2ba04840549c2bfcd9c668f06421a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-53863-5