Back to Search
Start Over
Failure mechanism and bearing force of CFRP strengthened square hollow section under compressive load
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Carbon fibre-reinforced polymer (CFRP) plates can efficiently repair or enhance the mechanical properties of the square hollow section. However, the loading end of such a CFRP-strengthened member is prone to local bearing failure under compressive load. Given this limitation, an innovative CFRP-plate-strengthened square hollow section composite member (CFRP-SHSCM) was raised, and the thick-walled section was welded on both ends of the thin-walled steel column. The mechanical properties of CFRP-SHSCMs were investigated through parameter finite element (FE) analysis, focusing on the influence of the amount of CFRP layers (n c ), the slenderness ratio (λ), the initial geometric imperfections (v 0 ), the CFRP layouts (2S and 4S) and the length of the exposed steel column (L e ). The load–displacement curves, the bearing force, and typical failure modes were also acquired. Results indicated that with increasing n c and v 0 , and decreasing λ, the conventional CFRP-SHSCMs were prone to local bearing failure with poor ductility, leading to the insufficient use of the CFRP plate, in contrast, the improved CFRP-SHSCMs primarily underwent overall buckling failure and exhibited better bearing force and ductility. Finally, the modified Perry-Robertson formula was put forward to predict the ultimate load of the CFRP-SHSCMs. The coefficients of variation between the FE simulation and the theoretical results were 0.00436 and 0.0292, respectively.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1b48c6009ea14f158da4094dd3a9e0d1
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-59752-7