Back to Search Start Over

Heterointerface Engineering of β-Chitin/Carbon Nano-Onions/Ni–P Composites with Boosted Maxwell-Wagner-Sillars Effect for Highly Efficient Electromagnetic Wave Response and Thermal Management

Authors :
Fei Pan
Lei Cai
Yuyang Shi
Yanyan Dong
Xiaojie Zhu
Jie Cheng
Haojie Jiang
Xiao Wang
Yifeng Jiang
Wei Lu
Source :
Nano-Micro Letters, Vol 14, Iss 1, Pp 1-18 (2022)
Publication Year :
2022
Publisher :
SpringerOpen, 2022.

Abstract

Abstract The rational construction of microstructure and composition with enhanced Maxwell-Wagner-Sillars effect (MWSE) is still a challenging direction for reinforcing electromagnetic wave (EMW) absorption performance, and the related EMW attenuation mechanism has rarely been elucidated. Herein, MWSE boosted β-chitin/carbon nano-onions/Ni–P composites is prepared according to the heterointerface engineering strategy via facile layer-by-layer electrostatic assembly and electroless plating techniques. The heterogeneous interface is reinforced from the aspect of porous skeleton, nanomaterials and multilayer construction. The composites exhibit competitive EMW response mechanism between the conductive loss and the polarization/magnetic loss, as describing like the story of “The Hare and the Tortoise”. As a result, the composites not only achieve a minimum reflection loss (RLmin) of − 50.83 dB and an effective bandwidth of 6.8 GHz, but also present remarkable EMW interference shielding effectiveness of 66.66 dB. In addition, diverse functions such as good thermal insulation, infrared shielding and photothermal performance were also achieved in the hybrid composites as a result of intrinsic morphology and chemicophysics properties. Therefore, we believe that the boosted MWSE open up a novel orientation toward developing multifunctional composites with high-efficient EMW response and thermal management.

Details

Language :
English
ISSN :
23116706 and 21505551
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nano-Micro Letters
Publication Type :
Academic Journal
Accession number :
edsdoj.1b3845de70a84dbca67f4208b67d56b3
Document Type :
article
Full Text :
https://doi.org/10.1007/s40820-022-00804-w