Back to Search Start Over

Prosthetic Joint Infections: Biofilm Formation, Management, and the Potential of Mesoporous Bioactive Glass as a New Treatment Option

Authors :
Dana Almasri
Yaser Dahman
Source :
Pharmaceutics, Vol 15, Iss 5, p 1401 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Infection of prosthetic joints is one of the biggest challenges to a successful replacement of the joint after a total joint arthroplasty. Such infections are caused by bacterial colonies that are difficult to treat by systemic delivery of antibiotics. Local delivery of antibiotics can prove to be the solution to such a devastating outcome that impacts patients’ health and ability to regain function in their joints as well as costs the healthcare system millions of dollars every year. This review will discuss prosthetic joint infections in detail with a focus on the development, management, and diagnosis of the infections. Surgeons often opt to use polymethacrylate cement locally to deliver antibiotics; however, due to the rapid release of antibiotics, non-biodegradability, and high chance of reinfection, the search for alternatives is in high demand. One of the most researched alternatives to current treatments is the use of biodegradable and highly compatible bioactive glass. The novelty of this review lies in its focus on mesoporous bioactive glass as a potential alternative to current treatments for prosthetic joint infection. Mesoporous bioactive glass is the focus of this review because it has a higher capacity to deliver biomolecules, stimulate bone growth, and treat infections after prosthetic joint replacement surgeries. The review also examines different synthesis methods, compositions, and properties of mesoporous bioactive glass, highlighting its potential as a biomaterial for the treatment of joint infections.

Details

Language :
English
ISSN :
19994923
Volume :
15
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Pharmaceutics
Publication Type :
Academic Journal
Accession number :
edsdoj.1b338b8fcfc94384998a7994575ac735
Document Type :
article
Full Text :
https://doi.org/10.3390/pharmaceutics15051401