Back to Search Start Over

Orthogonal multimodality integration and clustering in single-cell data

Authors :
Yufang Liu
Yongkai Chen
Haoran Lu
Wenxuan Zhong
Guo-Cheng Yuan
Ping Ma
Source :
BMC Bioinformatics, Vol 25, Iss 1, Pp 1-18 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Multimodal integration combines information from different sources or modalities to gain a more comprehensive understanding of a phenomenon. The challenges in multi-omics data analysis lie in the complexity, high dimensionality, and heterogeneity of the data, which demands sophisticated computational tools and visualization methods for proper interpretation and visualization of multi-omics data. In this paper, we propose a novel method, termed Orthogonal Multimodality Integration and Clustering (OMIC), for analyzing CITE-seq. Our approach enables researchers to integrate multiple sources of information while accounting for the dependence among them. We demonstrate the effectiveness of our approach using CITE-seq data sets for cell clustering. Our results show that our approach outperforms existing methods in terms of accuracy, computational efficiency, and interpretability. We conclude that our proposed OMIC method provides a powerful tool for multimodal data analysis that greatly improves the feasibility and reliability of integrated data.

Details

Language :
English
ISSN :
14712105 and 91973244
Volume :
25
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
edsdoj.1b1291cda47649f4a6da91973244af06
Document Type :
article
Full Text :
https://doi.org/10.1186/s12859-024-05773-y