Back to Search Start Over

Isothermal evaporation of α-pinene secondary organic aerosol particles formed under low NOx and high NOx conditions

Authors :
Z. Li
A. Buchholz
L. M. F. Barreira
A. Ylisirniö
L. Hao
I. Pullinen
S. Schobesberger
A. Virtanen
Source :
Atmospheric Chemistry and Physics, Vol 23, Pp 203-220 (2023)
Publication Year :
2023
Publisher :
Copernicus Publications, 2023.

Abstract

Many recent secondary organic aerosol (SOA) studies mainly focus on biogenic SOA particles formed under low NOx conditions and thus are applicable to pristine environments with minor anthropogenic influence. Although interactions between biogenic volatile organic compounds and NOx are important in, for instance, suburban areas, there is still a lack of knowledge about the volatility and processes controlling the evaporation of biogenic SOA particles formed in the presence of high concentrations of NOx. Here we provide detailed insights into the isothermal evaporation of α-pinene SOA particles that were formed under low NOx and high NOx conditions to investigate the evaporation process and the evolution of particle composition during the evaporation in more detail. We coupled Filter Inlet for Gases and AEROsols-Chemical Ionization Mass Spectrometer (FIGAERO-CIMS) measurements of the molecular composition and volatility of the particle phase with isothermal evaporation experiments conducted under a range of relative humidity (RH) conditions from low RH ( % RH) to high RH (80 % RH). Very similar changes were observed in particle volatility at any set RH during isothermal evaporation for the α-pinene SOA particles formed under low NOx and high NOx conditions. However, there were distinct differences in the initial composition of the two SOA types, possibly due to the influence of NOx on the RO2 chemistry during SOA formation. Such compositional differences consequently impacted the primary type of aqueous-phase processes in each type of SOA particle in the presence of particulate water.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
23
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.1ac62039b3124dc9be2ff80242b679a4
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-23-203-2023