Back to Search Start Over

CAT-RFE: ensemble detection framework for click fraud

Authors :
Yixiang LU
Guanggang GENG
Zhiwei YAN
Xiaomin ZHU
Xinchang ZHANG
Source :
网络与信息安全学报, Vol 8, Pp 158-166 (2022)
Publication Year :
2022
Publisher :
POSTS&TELECOM PRESS Co., LTD, 2022.

Abstract

Click fraud is one of the most common methods of cybercrime in recent years, and the Internet advertising industry suffers huge losses every year because of click fraud.In order to effectively detect fraudulent clicks within massive clicks, a variety of features that fully combine the relationship between advertising clicks and time attributes were constructed.Besides, an ensemble learning framework for click fraud detection was proposed, namely CAT-RFE ensemble learning framework.The CAT-RFE ensemble learning framework consisted of three parts: base classifier, recursive feature elimination (RFE) and voting ensemble learning.Among them, the gradient boosting model suitable for category features-CatBoost was used as the base classifier.RFE was a feature selection method based on greedy strategy, which can select a better feature combination from multiple sets of features.Voting ensemble learning was a learning method that combined the results of multiple base classifiers by voting.The framework obtained multiple sets of optimal feature combinations in the feature space through CatBoost and RFE, and then integrated the training results under these feature combinations through voting to obtain integrated click fraud detection results.The framework adopted the same base classifier and ensemble learning method, which not only overcame the problem of unsatisfactory integrated results due to the mutual constraints of different classifiers, but also overcame the tendency of RFE to fall into a local optimal solution when selecting features, so that it had better detection ability.The performance evaluation and comparative experimental results on the actual Internet click fraud dataset show that the click fraud detection ability of the CAT-RFE ensemble learning framework exceeds that of the CatBoost method, the combined method of CatBoost and RFE, and other machine learning methods, proving that the framework has good competitiveness.The proposed framework provides a feasible solution for Internet advertising click fraud detection.

Details

Language :
English, Chinese
ISSN :
2096109X
Volume :
8
Database :
Directory of Open Access Journals
Journal :
网络与信息安全学报
Publication Type :
Academic Journal
Accession number :
edsdoj.1ab37cb4416040f68ba42e62b8edc1b2
Document Type :
article
Full Text :
https://doi.org/10.11959/j.issn.2096-109x.2022065