Back to Search Start Over

Pharmacophoric-constrained heterogeneous graph transformer model for molecular property prediction

Authors :
Yinghui Jiang
Shuting Jin
Xurui Jin
Xianglu Xiao
Wenfan Wu
Xiangrong Liu
Qiang Zhang
Xiangxiang Zeng
Guang Yang
Zhangming Niu
Source :
Communications Chemistry, Vol 6, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Informative molecular representation is a vital prerequisite in artificial intelligence-driven de novo drug discovery, however, mapping the pharmacophoric information is underexploited by the atom-level based molecular graph representation. Here, the authors design a multi-level based Pharmacophoric-constrained heterogeneous graph transformer (PharmHGT) to better capture the pharmacophore structure and chemical information.

Subjects

Subjects :
Chemistry
QD1-999

Details

Language :
English
ISSN :
23993669
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Chemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.1a6806e682435c90f75b0b6e2b127c
Document Type :
article
Full Text :
https://doi.org/10.1038/s42004-023-00857-x