Back to Search Start Over

Improved Differential Evolution for Large-Scale Black-Box Optimization

Authors :
Mirjam Sepesy Maucec
Janez Brest
Borko Boskovic
Zdravko kacic
Source :
IEEE Access, Vol 6, Pp 29516-29531 (2018)
Publication Year :
2018
Publisher :
IEEE, 2018.

Abstract

The demand for solving large-scale complex problems continues to grow. Many real-world problems are described by a large number of variables that interact with each other in a complex way. The dimensionality of the problem has a direct impact on the computational cost of the optimization. During the last two decades, differential evolution has been shown to be one of the most powerful optimizers for a wide range of optimization problems. In this paper, we investigate its appropriateness for large-scale problems. We propose a new variation of differential evolution that exhibits good results on difficult functions with a large numbers of variables. The proposed algorithm incorporates the following mechanisms: the use of three strategies, the extended range of values for self-adapted parameters F and CR, subpopulations, and the population size reduction. The algorithm was tested on the CEC 2013 benchmark suite for largescale optimization, and on two real-world problems from the CEC 2011 benchmark suite on real-world optimization. A comparative analysis was performed with recently proposed algorithms. The analysis shows the superior performance of our algorithm on most complex problems, described by overlapping and nonseparable functions.

Details

Language :
English
ISSN :
21693536
Volume :
6
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.1a5159a4468f435fa639337cbf17903b
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2018.2842114