Back to Search Start Over

Landslide susceptibility assessment through multi-model stacking and meta-learning in Poyang County, China

Authors :
Yong Song
Yingxu Song
Chengnan Wang
Linwei Wu
Weicheng Wu
Yuan Li
Sicheng Li
Aiqing Chen
Source :
Geomatics, Natural Hazards & Risk, Vol 15, Iss 1 (2024)
Publication Year :
2024
Publisher :
Taylor & Francis Group, 2024.

Abstract

This study aims to evaluate the effectiveness of various individual machine learning and their ensemble techniques such as Stacking, Voting and Meta-learning in landslide susceptibility assessment taking Poyang, Jiangxi, China as an example. Multi-source geo-environmental data including field surveys, Sentinel-2A/B satellite images, Digital Elevation Models (DEM), and geological and hydrological data were utilized to construct and validate landslide susceptibility models. Results show that the Stacking Classifier outperformed other models, achieving the highest F1 Score of 0.846 and AUC (Area Under ROC Curve) of 0.923, demonstrating its strong predictivity, followed by the Voting Classifier with the F1 Score of 0.829 and AUC of 0.922. Among the individual models, the Multi-Layer Perceptron (MLP) performed best with the F1 Score of 0.828 and AUC of 0.904. Furthermore, the explainable Artificial Intelligence (XAI) technique was applied to better understand the mechanism of classifiers in predicting landslide susceptibility and it suggests a significant correlation between land use, distance to fault, and landslide occurrences. In conclusion, Stacking and Voting hybrid learning models show clear advantages over the individual ones for landslide risk zoning. The results of study may provide technical support for disaster mitigation efforts and future urban planning in areas prone to landslides in Poyang.

Details

Language :
English
ISSN :
19475705 and 19475713
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Geomatics, Natural Hazards & Risk
Publication Type :
Academic Journal
Accession number :
edsdoj.1a3c2194745d44c89e4ee05321f62eaa
Document Type :
article
Full Text :
https://doi.org/10.1080/19475705.2024.2354499