Back to Search Start Over

Comparison between Statistical Models and Machine Learning Methods on Classification for Highly Imbalanced Multiclass Kidney Data

Authors :
Bomi Jeong
Hyunjeong Cho
Jieun Kim
Soon Kil Kwon
SeungWoo Hong
ChangSik Lee
TaeYeon Kim
Man Sik Park
Seoksu Hong
Tae-Young Heo
Source :
Diagnostics, Vol 10, Iss 6, p 415 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

This study aims to compare the classification performance of statistical models on highly imbalanced kidney data. The health examination cohort database provided by the National Health Insurance Service in Korea is utilized to build models with various machine learning methods. The glomerular filtration rate (GFR) is used to diagnose chronic kidney disease (CKD). It is calculated using the Modification of Diet in Renal Disease method and classified into five stages (1, 2, 3A and 3B, 4, and 5). Different CKD stages based on the estimated GFR are considered as six classes of the response variable. This study utilizes two representative generalized linear models for classification, namely, multinomial logistic regression (multinomial LR) and ordinal logistic regression (ordinal LR), as well as two machine learning models, namely, random forest (RF) and autoencoder (AE). The classification performance of the four models is compared in terms of accuracy, sensitivity, specificity, precision, and F1-Measure. To find the best model that classifies CKD stages correctly, the data are divided into a 10-fold dataset with the same rate for each CKD stage. Results indicate that RF and AE show better performance in accuracy than the multinomial and ordinal LR models when classifying the response variable. However, when a highly imbalanced dataset is modeled, the accuracy of the model performance can distort the actual performance. This occurs because accuracy is high even if a statistical model classifies a minority class into a majority class. To solve this problem in performance interpretation, we not only consider accuracy from the confusion matrix but also sensitivity, specificity, precision, and F-1 measure for each class. To present classification performance with a single value for each model, we calculate the macro-average and micro-weighted values for each model. We conclude that AE is the best model classifying CKD stages correctly for all performance indices.

Details

Language :
English
ISSN :
20754418
Volume :
10
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Diagnostics
Publication Type :
Academic Journal
Accession number :
edsdoj.1a2e02442dc44771919a6325fe0de7cb
Document Type :
article
Full Text :
https://doi.org/10.3390/diagnostics10060415