Back to Search Start Over

Study on heat transfer and pressure steady-state characteristics of a floating nozzle under a moving wall

Authors :
Zhihui Liu
Jiahao Zhang
Zhijian Zhang
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-18 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract This work considers the flow field as two-dimensional turbulent flow and studies the steady-state properties of heat transfer and the pressure of the suspension nozzle. An adiabatic wall parallel to the moving wall and two slit entrances at either end of the adiabatic wall make up the rectangular flow field. The SST $$k - \omega$$ k - ω turbulence model is used in the turbulence computation. Both qualitative and quantitative analyses are conducted on the distribution of the flow field, temperature field, local Nusselt number, local pressure coefficient, average Nusselt number, and average pressure coefficient under various combination conditions. The findings indicate that when the suspension nozzle's flow field varies greatly, wall-jet velocity ratio is 0.1. A rise in Jet inclination angle is not helpful for the wall's suspension, and it has minimal effect on the flow field. The flow field is greatly influenced by separation space-slit width ratio. Larger separation space-slit width ratio values are advantageous for the wall's heat transmission but unfavorable for the wall's suspension. The flow field is most influenced by wall-jet velocity ratio. The wall's ability to convey heat is stronger the higher the wall-jet velocity ratio, but its ability to support weight falls.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.1a1b8bba84ba4132801a4dc1c8f65b35
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-62024-z