Back to Search Start Over

Electric-Force Conversion Performance of Si-Based LiNbO3 Devices Based on Four Cantilever Beams

Authors :
Huiyi Zhang
Xiaojun Qiao
Huifen Wei
Xiaohuang Li
Xiaohui Wu
Nanxin Yu
Hao Lu
Tao Guo
Xiujian Chou
Wenping Geng
Source :
Micromachines, Vol 14, Iss 11, p 1988 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

In micron or nano smart sensing systems, piezoelectric cantilever beams are distributed as major components in microsensors, actuators, and energy harvesters. This paper investigates the performance of four cantilever beam devices with “electric-force” conversion based on the inverse piezoelectric effect of lithium niobate (LiNbO3, LN) single-crystal materials. A new compact piezoelectric smart device model is proposed, designed as a single mass block connected by four beams, where devices exhibit smaller lateral errors (0.39–0.41%). The relationship between the displacement characteristics of cantilever beams and driving voltage was researched by applying excitation signals. The results show that the device has the maximum displacement at a first-order intrinsic frequency (fosc = 11.338 kHz), while the displacement shows a good linear relationship (R2 = 0.998) with driving voltage. The square wave signals of the same amplitude have greater “electrical-force” conversion efficiency. The output displacement can reach 12 nm, which is much higher than the output displacement with sinusoidal excitation. In addition, the relative displacement deviation of devices can be maintained within ±1% under multiple cycles of electrical signal loading. The small size, high reliability, and ultra-stability of Si–LN ferroelectric single-crystal cantilever beam devices with lower vibration amplitudes are promising for nanopositioning techniques in microscopy, diagnostics, and high-precision manufacturing applications.

Details

Language :
English
ISSN :
2072666X
Volume :
14
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Micromachines
Publication Type :
Academic Journal
Accession number :
edsdoj.19d4d4a1924ecb9ac3c127808e7d7e
Document Type :
article
Full Text :
https://doi.org/10.3390/mi14111988