Back to Search Start Over

Optimal deployment of feeder remote terminal units in distribution networks to improve power supply reliability

Authors :
Shenjun Zhan
Jinrui Tang
Yang Li
Binyu Xiong
Zilong Zhao
Zhenhai Li
Source :
Energy Reports, Vol 8, Iss , Pp 884-895 (2022)
Publication Year :
2022
Publisher :
Elsevier, 2022.

Abstract

Deploying feeder remote terminal units (FRTUs) in the distribution network and then integrating them into existing manual switches (MSs) can facilitate automatic locating of faulted sections and rapid isolation from faults to improve the power supply reliability. However, the fault management process, including fault location, fault isolation, and service restoration, is usually simplified in traditional FRTUs deployment methods. In particular, the fault isolation and service restoration operations are usually modeled individually without considering the FRTUs operation during the whole fault management process in these traditional methods. In this paper, the FRTUs in the potential service restoration paths for the customers are ruled out to avoid unnecessary power outage, and the effect of FRTUs operation on the fault management process is analyzed and discussed in branched distribution networks. Secondly, a quantification analysis model considering FRTUs operation is built to obtain the accurate interruption time of the distribution network. Thirdly, the quantification model is used to obtain the revenue generated by interruption cost reduction for the deployed FRTUs. Finally, an optimal deployment model of FRTUs in mixed-integer nonlinear format is constructed and solved efficiently by the software LocalSolver, which combines heuristic techniques and stochastic search algorithms. The new method is compared with the traditional FRTUs deployment method in the CSG 53-node test system, and the results show that the proposed method can achieve greater return on investment and higher power supply reliability.

Details

Language :
English
ISSN :
23524847
Volume :
8
Issue :
884-895
Database :
Directory of Open Access Journals
Journal :
Energy Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.193d421fa8a44967b3371a1f1ec426cf
Document Type :
article
Full Text :
https://doi.org/10.1016/j.egyr.2022.02.268