Back to Search Start Over

An Efficient Symmetric Electrolyzer Based On Bifunctional Perovskite Catalyst for Ammonia Electrolysis

Authors :
Mengfei Zhang
Hao Li
Xiuyun Duan
Peimiao Zou
Georgina Jeerh
Boyao Sun
Shigang Chen
John Humphreys
Marc Walker
Kui Xie
Shanwen Tao
Source :
Advanced Science, Vol 8, Iss 22, Pp n/a-n/a (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Abstract Ammonia is a natural pollutant in wastewater and removal technique such as ammonia electro‐oxidation is of paramount importance. The development of highly efficient and low‐costing electrocatalysts for the ammonia oxidation reaction (AOR) and hydrogen evolution reaction (HER) associated with ammonia removal is subsequently crucial. In this study, for the first time, the authors demonstrate that a perovskite oxide LaNi0.5Cu0.5O3‐δ after being annealed in Ar (LNCO55‐Ar), is an excellent non‐noble bifunctional catalyst towards both AOR and HER, making it suitable as a symmetric ammonia electrolyser (SAE) in alkaline medium. In contrast, the LNCO55 sample fired in air (LNCO55‐Air) is inactive towards AOR and shows very poor HER activity. Through combined experimental results and theoretical calculations, it is found that the superior AOR and HER activities are attributed to the increased active sites, the introduction of oxygen vacancies, the synergistic effect of B‐site cations and the different active sites in LNCO55‐Ar. At 1.23 V, the assembled SAE demonstrates ≈100% removal efficiency in 2210 ppm ammonia solution and >70% in real landfill leachate. This work opens the door for developments towards bifunctional catalysts, and also takes a profound step towards the development of low‐costing and simple device configuration for ammonia electrolysers.

Details

Language :
English
ISSN :
21983844
Volume :
8
Issue :
22
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.18cf7ca087f4693b7d386f59b2c1b71
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202101299