Back to Search
Start Over
THE BREUIL–MÉZARD CONJECTURE FOR POTENTIALLY BARSOTTI–TATE REPRESENTATIONS
- Source :
- Forum of Mathematics, Pi, Vol 2 (2014)
- Publication Year :
- 2014
- Publisher :
- Cambridge University Press, 2014.
-
Abstract
- We prove the Breuil–Mézard conjecture for two-dimensional potentially Barsotti–Tate representations of the absolute Galois group $G_{K}$, $K$ a finite extension of $\mathbb{Q}_{p}$, for any $p>2$ (up to the question of determining precise values for the multiplicities that occur). In the case that $K/\mathbb{Q}_{p}$ is unramified, we also determine most of the multiplicities. We then apply these results to the weight part of Serre’s conjecture, proving a variety of results including the Buzzard–Diamond–Jarvis conjecture.
- Subjects :
- 11F33
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 20505086
- Volume :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- Forum of Mathematics, Pi
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.184d255cdc96411cb2bd454599d12214
- Document Type :
- article
- Full Text :
- https://doi.org/10.1017/fmp.2014.1