Back to Search Start Over

Genome-scale metabolic modelling reveals interactions and key roles of symbiont clades in a sponge holobiont

Authors :
Shan Zhang
Weizhi Song
Geogios Marinos
Silvio Waschina
Johannes Zimmermann
Christoph Kaleta
Torsten Thomas
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Sponges harbour complex microbiomes and as ancient metazoans and important ecosystem players are emerging as powerful models to understand the evolution and ecology of symbiotic interactions. Metagenomic studies have previously described the functional features of sponge symbionts, however, little is known about the metabolic interactions and processes that occur under different environmental conditions. To address this issue, we construct here constraint-based, genome-scale metabolic networks for the microbiome of the sponge Stylissa sp. Our models define the importance of sponge-derived nutrients for microbiome stability and discover how different organic inputs can result in net heterotrophy or autotrophy of the symbiont community. The analysis further reveals the key role that a newly discovered bacterial taxon has in cross-feeding activities and how it dynamically adjusts with nutrient inputs. Our study reveals insights into the functioning of a sponge microbiome and provides a framework to further explore and define metabolic interactions in holobionts.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.184cb6fd396542d78d7cf551f2aa5c6e
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-55222-w