Back to Search
Start Over
Rational design of a live attenuated dengue vaccine: 2'-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques.
- Source :
- PLoS Pathogens, Vol 9, Iss 8, p e1003521 (2013)
- Publication Year :
- 2013
- Publisher :
- Public Library of Science (PLoS), 2013.
-
Abstract
- Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.
- Subjects :
- Immunologic diseases. Allergy
RC581-607
Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 15537366 and 15537374
- Volume :
- 9
- Issue :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS Pathogens
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1836805dc5dc4808b0d69ca745c7a173
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.ppat.1003521