Back to Search Start Over

Parallel RFSAI-BFGS Preconditioners for Large Symmetric Eigenproblems

Authors :
L. Bergamaschi
A. Martínez
Source :
Journal of Applied Mathematics, Vol 2013 (2013)
Publication Year :
2013
Publisher :
Hindawi Limited, 2013.

Abstract

We propose a parallel preconditioner for the Newton method in the computation of the leftmost eigenpairs of large and sparse symmetric positive definite matrices. A sequence of preconditioners starting from an enhanced approximate inverse RFSAI (Bergamaschi and Martínez, 2012) and enriched by a BFGS-like update formula is proposed to accelerate the preconditioned conjugate gradient solution of the linearized Newton system to solve Au=q(u)u, q(u) being the Rayleigh quotient. In a previous work (Bergamaschi and Martínez, 2013) the sequence of preconditioned Jacobians is proven to remain close to the identity matrix if the initial preconditioned Jacobian is so. Numerical results onto matrices arising from various realistic problems with size up to 1.5 million unknowns account for the efficiency and the scalability of the proposed low rank update of the RFSAI preconditioner. The overall RFSAI-BFGS preconditioned Newton algorithm has shown comparable efficiencies with a well-established eigenvalue solver on all the test problems.

Subjects

Subjects :
Mathematics
QA1-939

Details

Language :
English
ISSN :
1110757X and 16870042
Volume :
2013
Database :
Directory of Open Access Journals
Journal :
Journal of Applied Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.183005a98435467ba93f12d1fe23d53b
Document Type :
article
Full Text :
https://doi.org/10.1155/2013/767042