Back to Search
Start Over
Molecular prognostic prediction for locally advanced nasopharyngeal carcinoma by support vector machine integrated approach.
- Source :
- PLoS ONE, Vol 7, Iss 3, p e31989 (2012)
- Publication Year :
- 2012
- Publisher :
- Public Library of Science (PLoS), 2012.
-
Abstract
- BACKGROUND:Accurate prognostication of locally advanced nasopharyngeal carcinoma (NPC) will benefit patients for tailored therapy. Here, we addressed this issue by developing a mathematical algorithm based on support vector machine (SVM) through integrating the expression levels of multi-biomarkers. METHODOLOGY/PRINCIPAL FINDINGS:Ninety-seven locally advanced NPC patients in a randomized controlled trial (RCT), consisting of 48 cases serving as training set and 49 cases as testing set of SVM models, with 5-year follow-up were studied. We designed SVM models by selecting the variables from 38 tissue molecular biomarkers, which represent 6 tumorigenesis signaling pathways, and 3 EBV-related serological biomarkers. We designed 3 SVM models to refine prognosis of NPC with 5-year follow-up. The SVM1 displayed highly predictive sensitivity (sensitivity, specificity were 88.0% and 81.9%, respectively) by integrating the expression of 7 molecular biomarkers. The SVM2 model showed highly predictive specificity (sensitivity, specificity were 84.0% and 94.5%, respectively) by grouping the expression level of 12 molecular biomarkers and 3 EBV-related serological biomarkers. The SVM3 model, constructed by combination SVM1 with SVM2, displayed a high predictive capacity (sensitivity, specificity were 88.0% and 90.3%, respectively). We found that 3 SVM models had strong power in classification of prognosis. Moreover, Cox multivariate regression analysis confirmed these 3 SVM models were all the significant independent prognostic model for overall survival in testing set and overall patients. CONCLUSIONS/SIGNIFICANCE:Our SVM prognostic models designed in the RCT displayed strong power in refining patient prognosis for locally advanced NPC, potentially directing future target therapy against the related signaling pathways.
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 7
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS ONE
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1826dd0ba444db61a9b616f7bc7f2
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pone.0031989