Back to Search Start Over

Comparative study of oxidative stress caused by anthracene and alkyl-anthracenes in

Authors :
Ji-Yeon Roh
Pil-Gon Kim
Jung-Hwan Kwon
Source :
Environmental Health and Toxicology, Vol 33, Iss 1 (2018)
Publication Year :
2018
Publisher :
Korean Society of Environmental Health and Toxicology, 2018.

Abstract

Oxidative stress was evaluated for anthracene (Ant) and alkyl-Ants (9-methylanthracene [9-MA] and 9,10-dimethylanthracene [9,10-DMA]) in Caenorhabditis elegans to compare changes in toxicity due to the degree of alkylation. Worms were exposed at 1) the same external exposure concentration and 2) the maximum water-soluble concentration. Formation of reactive oxygen species, superoxide dismutase activity, total glutathione concentration, and lipid peroxidation were determined under constant exposure conditions using passive dosing. The expression of oxidative stress-related genes (daf-2, sir-2.1, daf-16, sod-1, sod-2, sod-3 and cytochrome 35A/C family genes) was also investigated to identify and compare changes in the genetic responses of C. elegans exposed to Ant and alkyl-Ant. At the same external concentration, 9,10-DMA induced the greatest oxidative stress, as evidenced by all indicators, except for lipid peroxidation, followed by 9-MA and Ant. Interestingly, 9,10-DMA led to greater oxidative stress than 9-MA and Ant when worms were exposed to the maximum water-soluble concentration, although the maximum water-soluble concentration of 9,10-DMA is the lowest. Increased oxidative stress by alkyl-Ants would be attributed to higher lipid-water partition coefficient and the π electron density in aromatic rings by alkyl substitution, although this supposition requires further confirmation.

Details

Language :
English
ISSN :
22336567
Volume :
33
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Environmental Health and Toxicology
Publication Type :
Academic Journal
Accession number :
edsdoj.181bbfa2bc0e4e4ebb39ee599416a612
Document Type :
article
Full Text :
https://doi.org/10.5620/eht.e2018006