Back to Search Start Over

Double Mutant Analysis with the Large Flower Mutant, ohbana1, to Explore the Regulatory Network Controlling the Flower and Seed Sizes in Arabidopsis thaliana

Authors :
Vuong Quoc Nhat
Yusuke Kazama
Kotaro Ishii
Sumie Ohbu
Hisato Kunitake
Tomoko Abe
Tomonari Hirano
Source :
Plants, Vol 10, Iss 9, p 1881 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Two growth processes, cell proliferation and expansion, determine plant species-specific organ sizes. A large flower mutant in Arabidopsis thaliana, ohbana1 (ohb1), was isolated from a mutant library. In the ohb1 flowers, post-mitotic cell expansion and endoreduplication of nuclear DNA were promoted. The whole-genome resequencing and genetic analysis results showed that the loss of function in MEDIATOR16 (MED16), a mediator complex subunit, was responsible for the large flower phenotypes exhibited by ohb1. A phenotypic analysis of the mutant alleles in MED16 and the double mutants created by crossing ohb1 with representative large flower mutants revealed that MED16 and MED25 share part of the negative petal size regulatory pathways. Furthermore, the double mutant analyses suggested that there were genetically independent pathways leading to cell size restrictions in the floral organs which were not related to the MED complex. Several double mutants also formed larger and heavier seeds than the wild type and single mutant plants, which indicated that MED16 was involved in seed size regulation. This study has revealed part of the size-regulatory network in flowers and seeds through analysis of the ohb1 mutant, and that the size-regulation pathways are partially different between floral organs and seeds.

Details

Language :
English
ISSN :
22237747
Volume :
10
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Plants
Publication Type :
Academic Journal
Accession number :
edsdoj.17f2df3c5f4739a60cf21cd323e7cb
Document Type :
article
Full Text :
https://doi.org/10.3390/plants10091881