Back to Search
Start Over
Lactate promoted cisplatin resistance in NSCLC by modulating the m6A modification-mediated FOXO3/MAGI1-IT1/miR-664b-3p/IL-6R axis
- Source :
- Neoplasia: An International Journal for Oncology Research, Vol 48, Iss , Pp 100960- (2024)
- Publication Year :
- 2024
- Publisher :
- Elsevier, 2024.
-
Abstract
- Background: Cisplatin resistance is one of the major obstacles in non-small cell lung cancer (NSCLC) treatment. Intriguingly, elevated lactate levels were observed in cisplatin-resistant cells, which spurred further investigation into their underlying biological mechanisms. Methods: Lactate levels were measured by lactate detection kit. Cisplatin-resistance NSCLC cells were established using progressive concentration of cisplatin. Cell viability, proliferation, and apoptosis were detected by CCK-8, EdU, and flow cytometry, respectively. Cell proliferation in vivo was determined by immunohistochemistry of Ki67 and apoptotic cells were calculated by the TUNEL. MeRIP-PCR was used to measure FOXO3 m6A levels. The interactions of genes were analyzed via RIP, ChIP, Dual-luciferase reporter, and RNA pull-down, respectively. Results: Elevated lactate levels were observed in both NSCLC patients and cisplatin-resistance cells. Lactate treatment increased cisplatin-resistance cell viability in vitro and promoted tumor growth in vivo. Mechanistically, lactate downregulated FOXO3 by YTHDF2-mediated m6A modification. FOXO3 transcriptionally reduced MAGI1-IT1 expression. FOXO3 overexpression inhibited the lactate-induced promotion of cisplatin resistance in NSCLC, which were reversed by MAGI1-IT1 overexpression. MAGI1-IT1 and IL6R competitively bound miR-664b-3p. FOXO3 overexpression or MAGI1-IT1 knockdown repressed lactate-mediated cisplatin resistance in vivo. Conclusion: Lactate promoted NSCLC cisplatin resistance through regulating FOXO3/MAGI1-IT1/miR-664b-3p/IL6R axis in YTHDF2-mediated m6A modification.
Details
- Language :
- English
- ISSN :
- 14765586
- Volume :
- 48
- Issue :
- 100960-
- Database :
- Directory of Open Access Journals
- Journal :
- Neoplasia: An International Journal for Oncology Research
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.178093543aa14627a4b086ce67ddb6f0
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.neo.2023.100960